Complexity of Finding Perfect Bipartite Matchings Minimizing the Number of Intersecting Edges

نویسنده

  • Grzegorz Guspiel
چکیده

Consider a problem where we are given a bipartite graph H with vertices arranged on two horizontal lines in the plane, such that the two sets of vertices placed on the two lines form a bipartition of H . We additionally require that H admits a perfect matching and assume that edges of H are embedded in the plane as segments. The goal is to compute the minimal number of intersecting edges in a perfect matching in H . The problem stems from so-called token swapping problems, introduced by Yamanaka et al. [3] and generalized by Bonnet, Miltzow and Rzążewski [1]. We show that our problem, equivalent to one of the special cases of one of the token swapping problems, is NP-complete.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Perfect Matchings in Edge-Transitive Graphs

We find recursive formulae for the number of perfect matchings in a graph G by splitting G into subgraphs H and Q. We use these formulas to count perfect matching of P hypercube Qn. We also apply our formulas to prove that the number of perfect matching in an edge-transitive graph is , where denotes the number of perfect matchings in G, is the graph constructed from by deleting edges with an en...

متن کامل

Finding All The Perfect Matchings in Bipartite Graphs

|This paper describes an algorithm for nding all the perfect matchings in a bipartite graph. By using the binary partitioning method, our algorithm requires O(c(n+m) + n 2:5 ) computational e ort and O(nm) memory storage, (where n denotes the number of vertices, m denotes the number of edges, and c denotes the number of perfect matchings in the given bipartite graph). Keywords|bipartite graph, ...

متن کامل

The unimodular intersection problem

We show that finding minimally intersecting n paths from s to t in a directed graph or n perfect matchings in a bipartite graph can be done in polynomial time. This holds more generally for unimodular set systems.

متن کامل

Optimum matchings in weighted bipartite graphs

Given an integer weighted bipartite graph {G = (U ⊔ V,E), w : E → Z} we consider the problems of finding all the edges that occur in some minimum weight matching of maximum cardinality and enumerating all the minimum weight perfect matchings. Moreover, we construct a subgraph Gcs of G which depends on an ǫ-optimal solution of the dual linear program associated to the assignment problem on {G,w}...

متن کامل

Matchings in Graphs

We know that counting perfect matchings is polynomial time when we restrict ourselves to the class of planar graphs. Generally speaking, the decision and search versions of a problem turn out to be “easier” than the counting question. For example, the problem of determining if a perfect matching exists, and finding one when it does, is polynomial time in general graphs, while the question of co...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1709.06805  شماره 

صفحات  -

تاریخ انتشار 2017